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1. Introduction. In the last few years considerable attention is given by re-
searchers to the Cosserat medium. The theory of this medium, initiated by W. Voigt
[1] and developed by brothers E. and F. Cosserat [2], takes into account an addi-
tional assumption that on the surface of a deformable body there act, besides sur-
face forces, also couples. This theory finds practical application as regards gra-
nular media.

Truesdell and Toupin [3] and Aero and Kuvshinskii' [4] gave modern formula-
tion of Cosserat medium equations. A number of theorems and methods of essential
importance may be found in the works of Mindlin and Tiersten [5], and of Koiter [6].

The aim of the present paper was to extend the theory of Cosserat medium to
problems of coupled thermoelasticity. We have derived constitutive equations on
the basis of thermodynamics of irreversible processes, and fundamental differential
equations of thermoelasticity. In part two of this paper we will present variatio-
nal theorems, theorem on reciprocity, and conclusions resulting from it.

2. Equations of motion and boundary conditions. Equations of motion in the
Cosserat medium lead to the system of two equations: the equation of balance
of momentum and equation of momentum of momentum [2], [5], [6]

(2.1) o

(2.2) awcfj!c+/j,)i,]+Yt = 0, i = 1,2, 3 .

In these equations c% is the force-stress tensor, /tji — the couple-stress tensor, Xi
denotes components of the body force vector referred to a body unit, and Yi —
components of the body couple vector. Further, m denotes components of displa-
cement vector, Q — the density, and ey* is the well-known Cartesian e-tensor.

Denoting by 5y the symmetric, and by ry the asymmetric part of the force-stress
tensor

(2.3) stj = y (ay+ffji), ri} = — (at} - an), atj =

97—1129]



98 W. N o w a c k i [130]

and representing the couple-stress tensor /HJ as the sum of a spherical tensor and
de viator

(2.4) pa = ^o <5y+wy, na = — n u , mu <=> 0 ,

we obtain after multiplying (2.2) by etmn the following expression for the asymme-
tric part of the tensor

(2.5) rmn = ~ — Umn («0, t+ntji,f+ ft) •

Inserting (2.3) — (2.5) into the first equation of motion (2.1), we get the final
form of the equations of motion

1
(2.6) Smn, m X" £imn tW#> ̂ m~l~ ft' m]+'^» = 6un •

To Eqs. (2.6) we should still add the boundary conditions and initial conditions.
We shall represent the boundary conditions here in the form given by Koiter [6]:

r i ]
\Shl + ^ Shkl (mjic, j — WJ(nn), k+ Yjc)\ Tin = pi,

(2.7) L 2 J
gh-

We have introduced here the notation m^n) = ma H] nj (no summation should be
made after n).

Further, pi denotes three reduced force tractions

\A-°) PI ~ Pi ~Z~ shkl gin), k nh > S(n) = gi^i,
2

and gh — two tangential couple tractions

(2.9) gh = gh — £(») fih •

The quantities pt and gt are connected with tensors cry and /xtj by the following rela-
tions

(2.10) pt = ffjt iij, gt = fjbji tij,

where «i are the components of the unit normal vector.
The magnitude ^o from (2.4) does not appear neither in the equations of motion

nor in the boundary conditions (2.7) and (2.8). /uQ is assumed to equal zero for rea-
sons explained in [6].

The aforegoing equations and relations hold regardless of the mechanical and
thermal properties of the material.

3. Energy equation and entropy balance. The principle of conservation of energy
written for an arbitrary volume V of the body, bounded by a surface A, has the form

(3.1) — J ^—evtvt+UjdV= J (XiVt+YiWt)dV+

+ J (piVt+giWt)dA— I quitdA.
v v
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Here vi — ta, wt = a>u where an = — ey* ujc, j is the component of the angular

vector. By U we denote the internal energy, and by qi — the component of the
heat-flux vector.

The teim on the left of (3.1) represents the rate of increase of the kinetic and
internal energy of the volume. The first term on the right-hand side of the equa-
tion represents the rate of work of the body forces and couple-forces, the second
term represents the rate of work of the surface tractions and couples. Finally, the
last integral on the right-hand side of Eq. (3.1) denotes the heat transferred to the
volume by heat conduction. Taking into consideration (2.1), (2.2) and (2.10), we
obtain, making use of the divergence theorem, the following equation

(3.2) J (U-s{]VU-WiWi,]+qi,i)dV=0.
v

This expression holds for each volume V, If the integrand is continuous, then
the relation

(3.3) tJ = % ©<, j+ftn wt, ] — qt, i,

holds locally. Introducing the strain tensor yy and torsion-flexure tensor
where

(3.4) yti = yn == -— (utj+Uj, <), xfj = ox, j

we can represent (3.3) in the form

(3.5) tf = Sij ytj+niji jty — qt, %.

The equation of entropy balance can be written in the form ([7], p. 29)

(3.6) J SdV=~ J •—• dA+ J QdV.
V A VA

The left-hand side of this equation represents the rate of increase of entropy.
The first term on its right-hand side is the rate at which entropy is supplied
to the volume across the surface. The second term on the right-hand side of (3.6)
denotes the rate of production of entropy, due to heat conduction. Using the diver-
gence theorem we have

(3.7)

hence, because of assumed arbitrariness in assumption of volume, we get

(3.8) i = 0_J|i + i ^ ,

which holds for each point of the body. In accordance with the postulate of ther-
modynamics of irreversible processes we have 0 ^ 0 .
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Eliminating <#,< from (3.5) and (3.8), we get

/ <JiT
(3.9) U = sn yu+mn x^+TS- T\0 + - ^

Introducing the expression for the Helmholtz: free energy F = U— ST, we
obtain

(3.10)
/

F = Sjiyi}+mnxy -TS- T\0 +

Since the free energy is a function of independent variables yy, xy, T1 there is

dF . dF . dF .
(3.11) f = l — r « + T ~ x(j+-r=T.

Assuming that the functions 0, #«,..., jy, w^ do not explicitly depend on time deri-
dF

vatives of the function yy, «y, T, and defining the entropy as S = rz7 we obtain,
comparing (3.10) with (3,11), the following relations

dF dF dF qiT,i
(3.12) Si) = -r—, m]t = -r—, S=-—-t 6+—~- = 0.

dyu dxij oT T2

The second law of thermodynamics will be satisfied if 6 ^ 0 or if

-T.tqt
(3.13) T2 £0.
This inequality satisfies the Fourier law of thermal conductivity
(3.14) - q i = kiiT,i or -f t-*&0,/ , T=T^+6.

Here TQ denotes the temperature for the natural state in which stresses and defor-
mations are equal zero (i.e. for yy = 0, xy = 0, T = To).

The quantities fcy are coefficients of thermal conductivity and according to the
principle of Onsager form a symmetric tensor. Function kijT,{T,j is a positively
determined quadratic function.

From Eq. (3.8) — taking into account the last relation of the group (3.12) —
we have

(3.15) TS=-qi,i = kijd,il.

For an isotropic and homogeneous body we get

(3.16) TS = !c9ji,

where k is a constant value.

4. Constitutive equations. Let us develop the free energy F {yy, «y, T) in a
natural state environment (yy = 0, «y = 0, T = To) into a Mac Laurin series,
omitting therein powers higher than 2. This development has, for an isotropic
body, the form

(4.1) F=/xyvyt]+—(yiCk)2+/J'' xyxtj+jj," Xijxn — /3ytt(5 — — 02.
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This form results from the following considerations. Since the free energy is a sca-
lar, each term at the right-hand side of the expression (4.1) should be a scalar, too.
But, from the components of the symmetric tensor yy we can construe two inde-
pendent quadratic invariants, namely yyyy and y(kk)2- Since the first invariant
of the torsion flexure tensor («** = 0) vanishes, we have only three additional
quadratic invariants yy My, Hy «y and «y x^. However, in Eq. (4.1) the term yy «y can-
not appear, since it is contradictory with the postulate of isotropy. In the last but
one term on the right-hand side of (4.1) appears the invariant yn. This results
from the fact that from the components of tensor ya one can form only one inva-
riant of the first kind, namely yn- The term »jt*0 will not appear in (4.1) since

Xkk = (Ok,k = i Ekmn O)n, mk = 0.

Making use of relations (3.12), we have

(4.2) % = 2(j,ytj+(Aykk - 00) <$</,

(4.3) mn

The quantities fx, X are Lame's constants, and I2, r) — new material constants.
These constants refer to the isothermal state. Since the function F is determin-

ed positively, p > 0, / is a real quantity, 0 < v < \ and — 1 < r\ < 1. Here
I

v = —r- is the Poisson's ratio. Solving (4.2) with respect to yu and (4.3)
J, (A -j-fl)

with respect to xy, we obtain

1(4'4) ™ = ^
(4.5) X y

Here K=?.+ ~/J,.

Let us contract the relation (4.4), Then

$kk
(4.6) ykk = -jj{ "f"

The physical meaning of the quantity fi/K will become clear when considering
the thermal deformation of the volume element, free from stresses on its surface.

Namely, — = a, where a is the coefficient of thermal expansion. After introdu-
ce

ction of the coefficient of linear thermal expansion at = — Eq. (4.2) will take the
form

(4.7) Sij = 2nyv+(Aytt - /30) dv, 0 = 3Kat.

Notice, moreover, that

(4-8>
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Let us determine also the internal energy U and entropy S. For this purpose we
shall make use of the differential relation resulting from the second law of thermo-
dynamics

(4.9) dU = By dytj-\-mn dxv+TdS.

Substituting into (4.9) the relation

I dS\ I dS\ tdS\
(4.10) dS = — dyu+ — dx{i+[—\ dT,

and taking into account completness conditions of dU, we arrive at the depen-

dence

(4.
(dS\ [dstA (dS\ (dS\

.11) — + Kp- = -T— -pdt}*=Q, -T— = 0 .
\<>ViiK,T \dTlY,* \dYvl*,T \favlViT

Substituting the above formula into (4.9) and (4.10) and taking into account

dS\ ce
——I = —7j where cs denotes specific heat at constant deformation, we get
dTly<M T

(4.12) dU = Sft dytj+mji dxy+Tpdytk+c, dT,

(4.13) dS = pdykk+YdT.

Substituting (4.2) into (4.12) and integrating this expression with the assump-
tion that U = 0 for the natural state of the body (yy = xy = 0, T= To) we obtain

(4.14) U=

wherein

W = fiyij yy + -z" (y**)2+4,a/2 [x

Similarly, integrating (4.13) with the assumption that S = 0 for the natural state,

we have

(4.15) S=j8y**+c.log .
JO

In the internal energy formula (4.14) the first term represents deformation work,
the last — heat content, whereas the last but one term — interaction of the defor-
mation field and temperature. In the expression for entropy the purely elastic term
is lacking. Note that in the expression for entropy there are no invariants of the
tensor «y. The formula for free energy has the form:

(4.16) F=U-ST=W-ykkpd+c.6-TcAog — .
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Assuming
T

two terms of this solution, we have

(4.17) F = ^

1 and developing the logarithm into a series, as well as retaining

2T0~ •

From comparison of (4.1) and (4.17) it results that m = -=f".

5. Differential equations of thermoelasticity. The constitutive relations (4.2) and
(4.3) enable to express the equations of motion (2.6) by displacements. Expressing
s-tj by yy, and tn$i by xy, and %n and functions yy and «y by displacements, we
represent Eq. (2.6) in the form

The effect of temperature is characterized here by the term /?0, i at the right-hand
side of the equation. For / == 0, Yt = 0 Eqs. (5.1) undergo transformation into
known equations of thermoelasticity in an elastic medium without couple-stresses.
Note that in Eq. (5.1) there appears no coefficient r\. Integrating Eq. (5.1) with
respect to x% and applying contraction, we obtain

To Eqs. (5.1) we have to add the equation of heat conductivity. For this purpose
consider the relations (3.16) and (4.15). Here we have

(5.3) TS = kQijU

(5.4) TS = TPJ>kk+cef.

It results from comparison of these relations that

/ \ k1 / 0\
(5-5) ^ - - S - ^ l + ^ ^ O , *
Linearizing this equation, we assume that 0/T$ is a small quantity as compared with
unity. Taking, moreover, into account heat sources within the body and denoting
by W the quantity of heat generated in the volume and time unit, we obtain the
following extended equation of thermal conductivity

1 Q W
(5-6) 0.]}-—&-rioytt=-—, Q = -r<

K rC /v

Interesting here is the fact that in Eq. (5.5) appears only the term derived from dila-
tation, consequently connected with the first deformation invariant yy and with
the invariant of symmetric tensor jy,

Eqs. (5.1) and (5.5) constitute a set of equations of linear coupled thermoe-
lasticity in the Cosserat medium. To the equations of thermoelasticity we should



104 W. N o w a c k i [136]

add boundary conditions (2.8) and (2.9) and boundary conditions connected with
thermal conductivity (the temperature or heat flow on the surface A bounding
the body being prescribed).

Dynamic equations of thermoelasticity (5.1) and (5.6) can be separated by de-
composition of displacement and body force vector into potential and selenoidal
part

(5.7) Ut = @,i+£i]k fk.j, Xi=Q (•&, i+£ijic %k, d •

Inserting (5.7) into (5.1) and (5.6), we obtain a system of five equations:

(5.8)

(5.9)

(5.10) Dd-r]0V
2 & = - — .

We have in t roduced here t he following no ta t ions

2 2 _ _ 1 _ O2 1
1 c\ " 2 ĉ  "

If we eliminate tempsrature from Eqs. (5.8) and (5.10) we get equations charac-
terizing propagation of longitudinal and transversal waves

(5.11) [ n f J D - . i - * - " ! - - mQ 1 / „ 1

(5.12)

Consider propagation of thermoelastic waves in an unbounded medium. Let
in an unbounded space be no forces F< and components X% = ey* %u, j and let the
initial conditions for the function ipt be homogeneous. In this case in the Cosserat
medium propagates only the longitudinal wave expressed by Eq. (5.11). It may
be caused by heat sources, body forces 2* = £#, t and non-homogeneous initial
conditions of the function 0. The longitudinal wave is accompanied by heat
generation, the temperature 6 being determined from Eq, (5.8)

(5.13) e = ±
m

In this case we have

(5.14) Ui = 0,i, yl} = 0>ijt

and

(5.15) st, - 2 / t ( ^ y - (5y V2<Z>)+e($- #) , m;< = 0,
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The longitudinal wave causes changes of volume of elements ( y « = V2 0 ^ 0)
and symmetric components of force-stress tensor.

The longitudinal wave equation (5.11) is identical with the wave equation of
elastic medium without couple-stresses.

If in the unbounded Cosserat medium & = 0, Q = 0 and the initial conditions
of the function 0 are homogeneous, then in every point of the medium is 0 = 0.
In the medium will arise only transversal waves characterized by Eq. (5.12). Since
in this case m = e ^ tpic, j , iH, t = yick — 0, the elements of the body undergo the
change of form. In this medium we have

(5-16) S{j = fi(m,j+U}.t), mn = 4nl2{i<i]+rixji).

Propagation of transversal waves causes no change of temperature; this follows
from Eq. (5.13), which, at 0 = 0, # = 0, gives (9 = 0. In the case Yt = 0,1=0, Eqs.
(5.12) are transformed into known equations of elastokinetics. Note that Eqs. (5.12)
were discussed in [5].

If we have to do with a bounded medium, the solution of Eqs. (5.11) and (5.9)
will be composed of two parts, namely of particular integrals 0' and y>'t of non-
-homogeneous equations and of general solutions 0", y'l satisfying homogene-
ous equations

(5.17)

(5.18) D?%=0.

The system of fundamental integral equations (5.1) and (5.3) may be separated
in a different way.

Let us represent the equation of thermoelasticity in a different form, convenient
for further considerations,

(5.19)

L4t(ui)+L44(6) =

Lt4 = — /?o di,

1

4 " ~~

2 ' / '

Q

L4i = —

(5.20)

where

l dt di, L44 = D,

I2

G = l + — V2,
a

Let us introduce the vector function (pi and scalar function £ connected with
displacements «< and with temperature d by the following relations,

(5.21) Ui = (Qdu - rdi dj) w + j 8 0 dt

(5.22) e i
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where

Q=DH-poriodtV*, P = aGD- poijodtt H=n2
2+aGW.

Inserting (5.21) and (5.22) into Eqs. (5.19) and (5.20), We obtain a system of
four already separated equations

(5.23) ul (DH - VQ p0 dt V2) pt+Ft = 0,

(5.24) {DH—no Po h V*) C+ — = 0,

or also

(5.25) n\{U\D-rto mdt W) w + -4- lx t - \ e m Yj. t) = 0,
C\Q \ *

(5.26) (D?D-^mdiV2)f+

where

Functions ?>i may be treated as a Galerkin's vector function generalized
to thermoelastic problems. For Yt = 0, / = 0 Eqs. (5.25) and (5.26) transform
into known coupled thermoelasticity equations of elastic medium without couples.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECHNI-
CAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECIIANIKI OSRODKCW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEM6W
TECHNIKI, PAN)
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B. HOBALtKHfi, MOMEHTOBblE HAIlPflHCEHHfl B TEOPHM
CTH. I,

B pa6oTe BhiBefleiiH KOHCTjrryTHBHMe ypasHemifl TepMoynpyrocTH fljia ynpyrofi cpeflbi Koc-
cepaTa Ha 6a3Hce TepMOflHHaMHKH Heo6paTHMtix npoi;eccoB. flaeTCH nonHwit cocTaB flH<]D(j>e-
peHLoianbHbix ypaBHeHHfi TepMoynpyrocTH, a TaKHce npHBOflaTCs flBa MeTofla pa3teflHHeHHH
3ToJt


